424 research outputs found

    Hedging by Sequential Regression: An Introduction to the Mathematics of Option Trading

    Get PDF
    It is widely acknowledge that there has been a major breakthrough in the mathematical theory of option trading. This breakthrough, which is usually summarized by the Black-Scholes formula, has generated a lot of excitement and a certain mystique. On the mathematical side, it involves advanced probabilistic techniques from martingale theory and stochastic calculus which are accessible only to a small group of experts with a high degree of mathematical sophistication; hence the mystique. In its practical implications it offers exciting prospects. Its promise is that, by a suitable choice of a trading strategy, the risk involved in handling an option can be eliminated completely. Since October 1987, the mood has become more sober. But there are also mathematical reasons which suggest that expectations should be lowered. This will be the main point of the present expository account. We argue that, typically, the risk involved in handling an option has an irreducible intrinsic part. This intrinsic risk may be much smaller than the a priori risk, but in general one should not expect it to vanish completely. In this more sober perspective, the mathematical technique behind the Black-Scholes formula does not lose any of its importance. In fact, it should be seen as a sequential regression scheme whose purpose is to reduce the a priori risk to its intrinsic core. We begin with a short introduction to the Black-Scholes formula in terms of currency options. Then we develop a general regression scheme in discrete time, first in an elementary two-period model, and then in a multiperiod model which involves martingale considerations and sets the stage for extensions to continuous time. Our method is based on the interpretation and extension of the Black-Scholes formula in terms of martingale theory. This was initiated by Kreps and Harrison; see, e.g. the excellent survey of Harrison and Pliska (1981,1983). The idea of embedding the Black-Scholes approach into a sequential regression scheme goes back to joint work of the first author with D. Sondermann. In continuous time and under martingale assumptions, this was worked out in Schweizer (1984) and Föllmer and Sondermann (1986). Schweizer (1988) deals with these problems in a general semimartingale mode

    Hedging by Sequential Regression: An Introduction to the Mathematics of Option Trading

    Get PDF
    It is widely acknowledge that there has been a major breakthrough in the mathematical theory of option trading. This breakthrough, which is usually summarized by the Black-Scholes formula, has generated a lot of excitement and a certain mystique. On the mathematical side, it involves advanced probabilistic techniques from martingale theory and stochastic calculus which are accessible only to a small group of experts with a high degree of mathematical sophistication; hence the mystique. In its practical implications it offers exciting prospects. Its promise is that, by a suitable choice of a trading strategy, the risk involved in handling an option can be eliminated completely. Since October 1987, the mood has become more sober. But there are also mathematical reasons which suggest that expectations should be lowered. This will be the main point of the present expository account. We argue that, typically, the risk involved in handling an option has an irreducible intrinsic part. This intrinsic risk may be much smaller than the a priori risk, but in general one should not expect it to vanish completely. In this more sober perspective, the mathematical technique behind the Black-Scholes formula does not lose any of its importance. In fact, it should be seen as a sequential regression scheme whose purpose is to reduce the a priori risk to its intrinsic core. We begin with a short introduction to the Black-Scholes formula in terms of currency options. Then we develop a general regression scheme in discrete time, first in an elementary two-period model, and then in a multiperiod model which involves martingale considerations and sets the stage for extensions to continuous time. Our method is based on the interpretation and extension of the Black-Scholes formula in terms of martingale theory. This was initiated by Kreps and Harrison; see, e.g. the excellent survey of Harrison and Pliska (1981,1983). The idea of embedding the Black-Scholes approach into a sequential regression scheme goes back to joint work of the first author with D. Sondermann. In continuous time and under martingale assumptions, this was worked out in Schweizer (1984) and Föllmer and Sondermann (1986). Schweizer (1988) deals with these problems in a general semimartingale mode

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    On worst-case investment with applications in finance and insurance mathematics

    Get PDF
    We review recent results on the new concept of worst-case portfolio optimization, i.e. we consider the determination of portfolio processes which yield the highest worst-case expected utility bound if the stock price may have uncertain (down) jumps. The optimal portfolios are derived as solutions of non-linear differential equations which itself are consequences of a Bellman principle for worst-case bounds. They are by construction non-constant ones and thus differ from the usual constant optimal portfolios in the classical examples of the Merton problem. A particular application of such strategies is to model crash possibilities where both the number and the height of the crash is uncertain but bounded. We further solve optimal investment problems in the presence of an additional risk process which is the typical situation of an insurer

    European Options in a Nonlinear Incomplete Market Model with Default

    Get PDF
    We study the superhedging prices and the associated superhedging strategies for European options in a nonlinear incomplete market model with default. The underlying market model consists of one risk-free asset and one risky asset, whose price may admit a jump at the default time. The portfolio processes follow nonlinear dynamics with a nonlinear driver ff. By using a dynamic programming approach, we first provide a dual formulation of the seller's (superhedging) price for the European option as the supremum, over a suitable set of equivalent probability measures Q∈QQ \in {\cal Q}, of the ff-evaluation/expectation under QQ of the payoff. We also establish a characterization of the seller's (superhedging) price as the initial value of the minimal supersolution of a constrained backward stochastic differential equation with default. Moreover, we provide some properties of the terminal profit made by the seller, and some results related to replication and no-arbitrage issues. Our results rely on first establishing a nonlinear optional and a nonlinear predictable decomposition for processes which are Ef{\cal E}^f-strong supermartingales under QQ for all Q∈QQ \in {\cal Q}

    Inf-convolution of G-expectations

    Full text link
    In this paper we will discuss the optimal risk transfer problems when risk measures are generated by G-expectations, and we present the relationship between inf-convolution of G-expectations and the inf-convolution of drivers G.Comment: 23 page

    Convex Risk Measures Beyond Bounded Risks

    Get PDF
    Average Value at Risk, welche sich breiter Anwendung in der Versicherungswirtschaft erfreuen. Die in den Anwendungen vorherrschende Klasse konvexer Risikomaße hat di

    Duality theory for optimal investments under model uncertainty

    Full text link
    • 

    corecore